Defect Facilitated Phonon Transport through Kinks in Boron Carbide Nanowires.
نویسندگان
چکیده
Nanowires of complex morphologies, such as kinked wires, have been recently synthesized and demonstrated for novel devices and applications. However, the effects of these morphologies on thermal transport have not been well studied. Through systematic experimental measurements, we show that single-crystalline, defect-free kinks in boron carbide nanowires can pose a thermal resistance up to ∼30 times larger than that of a straight wire segment of equivalent length. Analysis suggests that this pronounced resistance can be attributed to the combined effects of backscattering of highly focused phonons and required mode conversion at the kink. Interestingly, it is also found that instead of posing resistance, structural defects in the kink can actually assist phonon transport through the kink and reduce its resistance. Given the common kink-like wire morphology in nanoelectronic devices and required low thermal conductivity for thermoelectric devices, these findings have important implications in precise thermal management of electronic devices and thermoelectrics.
منابع مشابه
Investigation of the effect of Argon flow on the morphology of B4C nanoparticles synthesized by the VLS method
In this paper, new various morphologies of boron carbide were successfully synthesized using carbon black, activated carbon and boron oxide precursors as well as using cobalt nanoparticles as catalysts. Almost the whole morphology of synthesized boron carbide are consisted of smooth nanowires and nanobelts. With decreasing the carbon black particles size from 29 nm to 13 nm (29, 23, 17 and 13),...
متن کاملObservation of ‘hidden’ planar defects in boron carbide nanowires and identification of their orientations
The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of...
متن کاملCatalyst-Free Synthesis and Characterization of Metastable Boron Carbide Nanowires
Catalyst-free growth of boron carbide nanowires is achieved by pyrolysis of diborane and methane at 650–750 -C and around 500 mTorr in a quartz tube furnace. Electron-diffraction analysis using a novel diffraction-scanning transmission electron microscopy (D-STEM) technique indicates that the crystalline nanowires are single-crystal orthorhombic boron carbide. TEM images show that the nanowires...
متن کاملBoron carbide nanowires with uniform CNx coatings
Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewal...
متن کاملSpecific heat of aluminium-doped superconducting silicon carbide
The discoveries of superconductivity in heavily boron-doped diamond, silicon and silicon carbide renewed the interest in the ground states of charge-carrier doped wide-gap semiconductors. Recently, aluminium doping in silicon carbide successfully yielded a metallic phase from which at high aluminium concentrations superconductivity emerges. Here, we present a specific-heat study on superconduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2017